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Thermal stresses in surface-coated Fe-3%Si sheet
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The aim of the paper is to present a model of thermal stresses in a layered plane system,
and consequently to verify the model validity by comparing calculated thermal stresses
with measured thermal stresses. The paper deals thus with thermal stresses in the Fe-3%Si
sheet for magnetic applications, having a surface coating of the 2MgO-TiO,, ZrO,, TiO,,
Al;03, 2MgO0-Si0,, MgO-Al,03 oxides. The thermal stresses, originating during a cooling
process as a consequence of the difference in thermal expansion coefficients between the
Fe-3%Si sheet and the surface coating, degrade hysteresis losses of the Fe-3%Si sheet.
Magnetic properties of the presented coating—-Fe-3%Si systems, as the magnetic induction
and the hysteresis losses before and after coating formation, are presented. The theoretical
background, including the model of the thermal stresses in anisotropic and isotropic
two-layered plane systems, consequently transformated to the three-layered plane system,
is presented. Calculated thermal stresses are compared with those of a tension
measurement of the presented coating—Fe-3%Si systems, numerical equality of the
calculated and measured thermal stresses is observed. © 2003 Kluwer Academic

Publishers

1. Introduction

As the consequence of the difference in the thermal
expansion coefficients between the individual layers,
the thermal stresses originate during the cooling pro-
cess in the layered system to cool down from the initial
temperature, 7j, to the final temperature, 7;.

The presented calculation of the thermal stresses is
performed for the anisotropic and isotropic two-layered
plane system (A/B) (Fig. 1), using the transformation
to the anisotropic and isotropic three-layered plane sys-
tem (A/B/A). The thermal stresses are derived on the
basis of the following premises:

1. The thermal expansion and elastic coefficients,
a1Q, ojq and s»qQ, s3jQ, respectively, along the axis
xjq (j = 2, 3) of the Cartesian system (0x1qx2QX3Q)
(Fig. 1), the Young’s modulus, Eq, the Poisson’s num-
ber, g, of the layer Q(Q = A, B) are temperature-
independent in the temperature range, (7%, 7T;), of the
cooling process [1]. During the cooling process, no mi-
crostructural changes occur [1].

2. The Hooke’s laws (3), (4), (9) [2] are valid in
whole temperature range of the cooling process without
consideration of the high-temperature stress relaxation
[1]. In regard to the A/B configuration (Fig. 1), the
A/B system may be assumed not to be acted by the
stress o11q [2].

2. Theoretical background

2.1. Anisotropic two-layered plane system
Fig. 1 shows the A/B system of which dimensions at
the temperature T € (T, T;), tqr and [jgr for x1q = 0,
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along the axes x1q and xjq (j = 2,3; Q = A, B) of
the Cartesian system (0OxjQx2Qx3q), respectively, can
be written in the forms

tor = fof[1 + a1o(T — Ty)], (D
Lior = Lill — ajo(Ti — T)), ()

where #qr and [j; are the thickness of the layer Q and
the A/B system dimension along the axis xjq at the
temperature Tt and T;, respectively (Fig. 1).

During the cooling process, the A/B system plane
X2qx3q for x;q = 0 may be assumed to represent the
zero-stress plane. In the case that ajs < o, the lay-
ers A and B are acted by the compressive and ten-
sile stresses, respectively, and the A/ B system may be
thus assumed to exhibit the shape shown in Fig. 2. The
x1-dependences of the strain ¢jq, and consequently of
the stress ojiq (j = 2, 3) acting in the layer Q(Q =
A, B) for x1q € (0, tqr), have the forms

EjiA = $2jA022A + S3jA033A

_ liar(x1a) — ljar

= —CjAX1A> (3)
Liar
&jjB = $2jB022B 1 S3jBO33B
lipr(x1B) — [iBT
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= —————— = (CjpXIB, “
LipT
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Figure 1 The two-layered plane system (A/B) of the thickness of the
layer Q, tq;, and of the dimension along the axis xjq (j = 2,3; 0 =
A, B) of the Cartesian system (0x1Qx2QX3Q), /ji, at the temperature 7;
of the cooling process of the temperature range (73, T¢), where T; is the
initial temperature and 7 is the final temperature. The A/ B system plane
for x;q = 0 may be assumed to represent the zero-stress plane.
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Figure 2 The two-layered plane system (A/B) of the thickness of the
layer Q, tqr (1), and of the dimension along the axis xjq (j = 2,3;
Q = A, B) of the Cartesian system (0x1Qx2QX3q), /it (2), at the tem-
perature 7' € (T3, Tr), where T; is the initial temperature and 7 is the final
temperature of the cooling process. The A/B system plane for xijg = 0
may be assumed to represent the zero-stress plane.
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Considering the influence of ojq (j=2,3; Q=
A, B) on the layer thickness, the thickness fqr in (5)—
(11) may be replaced by

for
Io = IoT —/ €11Q dle
0

I‘QT
= IQr — / (51200220 + $13Q033Q) dx1Q
0

(8ga — dgB)(S120C230Q + 513QC32Q)i|
2(tar + tBT) '

= tQT[l + tor
(12)

where dqa, dgp are the Kronecker’s symbols.

In the A/B/A system of the thickness 4, g, fo of
the individual layers, the planes xyax34 and xppx3p for
x1o = Oand x5 = /2, respectively, may be assumed
to represent the zero-stress planes. The stress ojp (j =
2,3) in the A/B/A system exhibits the symmetrical
x1-dependences within the intervals x;g € (0, 153/2),
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x1B € (tg/2, tg), and is thus determined by (7)-(12),
using the transformation tg¢ — fg¢/2 in (1).

2.2. Isotropic two-layered plane system
Using the transformations aq, jq —> «Q; Sjo —
I/EQ; S12Q> $13Q» $23Q — —MQ/EQ, the stress oQ =
ojio (j = 2,3), acting in the plane xpqx3q of the
layer Q(Q = A, B) of the isotropic A/B system for
x1Q € (0, fq), has the forms

CAXIA .
OA = Ojip = — , =2,3, 13
A = Tjja i J (13)
CBXIB .
OB = Oiig = , =12,3, 14
B i = T J (14)
nQcQ(8oa — 5QB)]
to=tor|1+¢ , O0=A,B,
Q QT|: o Eq(tar + tBT)
(15)
Eo(ap —ap)(Ti— T
co = Qlag — aa)( ) 0=AB
(I = pll — ag(T; — T)]
(16)

3. Thermal stresses in surface-coated
Fe-3%Si sheet

The Fe-3%Si sheet [wt%], representing the steel for
magnetic applications, is used as a material for mag-
netic cores. Applying the surface coating of suitable
adhesion to the Fe-3%Si sheet surface, and of the ther-
mal expansion coefficient less than the Fe-3%Si sheet,
the Fe-3%Si sheet is acted by the tensile stresses to
degrade the hysteresis losses of the Fe-3%Si sheet [3—
7]. To achieve high tensile stresses, the layered sys-
tem has to exhibit the differential of the thermal ex-
pansion coefficients of the individual layers of not less
than 6 x 107 K~! [3, 4, 7]. Material constants of the
Fe-3%Si sheet [8] and of the surface coatings [7] ap-
plied to the Fe-3%Si sheet are listed in Table I. In regard
to the thermal expansion coefficients and Section 2.2,
the surface coating and the Fe-3%Si sheet represent the
layers A, (n = 1-6) and B of the isotropic two-layered
plane system, respectively.

Temperature dependences of the compressive and
tensile stresses, os and op, acting in the layers A,
and B on the A, — B boundary of the A,/B system
(Figs 1 and 2), cooling down from the initial tempera-
ture, 7; = 550°C, to the final temperature, 7 = 20°C,
are shown in Fig. 3, respectively. The temperature of
550°C represents the minimum temperature of a relax-
ation process of the coating—Fe-3%Si system [9]. Due
to the coating—Fe-3%Si isotropy, the stresses o5 and
op in the layers A, and B of the thickness at the final
temperature, faf = 3 um and tgf = 0.2 mm (1), are de-
termined by (1), (13)—(16), for xjo = t5 and x5 = 1
(1), (15) and (16), respectively.

Considering the influence of the acting thermal
stresses on the layer thickness (15), (16), Table I
presents calculated thermal stresses at the final temper-
ature of the cooling process, oat, ot (1), (13)—(16), and
the measured stress, oy, determined by Kanai et al.



TABLE I The material constants of the surface coatings [7] and the Fe-3%Si sheet [8, 9]. The calculated thermal stresses, oar, opr (Fig. 3) for
X1A = ta, X1 = tg (1), (15) and (16), respectively, and the measured thermal stress, opm for x1g = g, acting in the surface coating (A,) and the
Fe-3%Si sheet (B) on the coating—Fe-3%Si boundary (Figs 1 and 2), are determined by (1), (13—16), and by the tension measurement by Kanai et
al. [7], respectively, at the final temperature of the cooling process, Tr. The calculated thermal stresses, oaf, opt, are determined on the following
conditions [7]: the initial and final temperature of the cooling process, 7; = 550°C and T = 20°C, respectively; the thickness of the surface coating
and of the Fe-3%S$i sheet at the final temperature, for = 3 um and fgr = 0.2 mm (1), respectively; the temperature of 550°C represents the minimum
temperature of the relaxation process of the coating—Fe-3%Si system [9-11]. The magnetic induction of the Fe-3%Si sheet at the magnetic field
intensity of 800 Am~!, Bg [7], and the hysteresis losses of the Fe-3%Si sheet at the magnetic induction of 1.7 T and at the frequency of 50 Hz, Wy7/s9
[71, both before/after the coating formation, along with the decrease of the hysteresis losses in [%] after the coating formation, are presented

Coating Ea aA OAf OBf OBfm Bg W|b7/50
n (Layer A,) (GPa) Ua (107K~ (MPa) (GPa) (GPa) (T) Wkg™h
1 2MgO-TiO, 20 2.0 —-1.6 1.08 1.0 1.939/1.920 0.82/0.67/18%
2 Zr0; 140 1.1 -16.2 1.13 1.1 1.939/1.921 0.83/0.67/19%
3 TiO, 290 0.25 4.4 —21.8 1.15 1.2 1.937/1.924 0.81/0.65/20%
4 ALLO; 400 3.2 —24.2 1.17 1.2 1.938/1.921 0.82/0.65/21%
5 2MgO-SiO; 220 1.0 —26.5 1.22 1.2 1.936/1.916 0.82/0.65/21%
6 MgO-Al,03 250 3.6 -30.6 1.27 1.4 1.935/1.917 0.83/0.64/23%

Sheet Eg UB oB

(Layer B) (GPa) (107K~

Fe-3%Si 225 0.23 11.7

2Before/after coating formation.
bBefore/after coating formation/decrease of hysteresis losses in (%).
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Figure 3 Temperature dependences of the compressive and tensile stresses, oa for xjao = s and op for x;g = 1 (1), (13)—(16), acting in the layers
A, and B on the A, — B boundary of the A, /B system (Figs 1 and 2), cooling down from the initial temperature, 7; = 550°C, to the final temperature,
Ty = 20°C. The temperature of 550°C represents the minimum temperature of the relaxation process of the coating—Fe-3%Si system [9—11]. The
layers A, (n = 1-6) and B of the thickness at the final temperature, zaf = 3 pm and 7gf = 0.2 mm [7], are represented by the surface coating and the
Fe-3%Si sheet (Table I), respectively.

[7] by the tension measurement at the final temperature
of the cooling process, 7t, and on the above conditions,
T; = 550°C, Ty = 20°C, taf = 3 um, tgr = 0.2 mm
(1), x1a = ta, x18 = tg (1), (15), (16). The calculated
and measured thermal stresses (Table I) are influenced
by the thermal expansion coefficients, s and op, as
well as by the Young’s moduli of the coatings and the
Fe-3%Si sheet (13)—(16), Es and Eg, respectively, as
presented in [3, 7]. In regard to the premises (1), (2), the
differences between ops and oy, are probably caused
by the temperature dependence of the material con-
stants of the surface coatings and the Fe-3%Si sheet,
and by the high-temperature stress relaxation.

The magnetic induction of the Fe-3%Si sheet at the
magnetic field intensity of 800 Am™', Bg [7], and the
hysteresis losses of the Fe-3%Si sheet at the magnetic
induction of 1.7 T and at the frequency of 50 Hz, Wy7,5¢
[7], both before/after the coating formation, along with
the decrease of the hysteresis losses in [%] after the

coating formation, are listed in Table I. After the coating
formation, the hysteresis losses of the Fe-3%Si sheet
of the presented coating—Fe-3%Si systems exhibit the
decrease up to 18-23%, following the increase of the
calculated and measured [7] thermal stresses acting on
the coating—Fe-3%Si boundary. As presented in Table I,
more considerable decrease of the hysteresis losses of
the Fe-3%S:i is related to higher thermal stress (Table I)
[7], however, this observed result might not be assumed
to be generally valid.

4. Conclusions

The results of the presented calculation of the thermal
stresses, acting in the Fe-3%Si sheet for magnetic ap-
plications, surface-coated by the 2MgO-TiO,, ZrO,,
TiO,, Al,O3, 2MgO-Si0,, Mg0-Al,03 oxides, orig-
inating during the cooling process as the consequence
of the difference in the thermal expansion coefficients
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between the Fe-3%Si sheet and the surface coating, and
degrading the hysteresis losses of the Fe-3%Si sheet,
are as follows:

1. The formulae for the thermal stresses, (5)—(11)
and (13)—(16), and the formulae for the layer thickness
influenced by the thermal stresses, (12) and (15), for
the anisotropic and isotropic two-layered plane system,
respectively, are presented.

2. The transformation of the thermal stresses of the
two-layered plane system (A/B) to the three-layered
plane system (A/B/A) is presented.

3. The temperature dependences of the thermal
stresses acting in the Fe-3%Si sheet and in the surface
coating on the coating—Fe-3%Si boundary are pre-
sented (Fig. 3). The calculated thermal stresses are de-
termined by the derived formulae (13)—(16), and com-
pared with those determined by the tension measure-
ment by Kanai et al. (Table I) [7]. The calculated and
measured values (Table I) are influenced by the thermal
expansion coefficients as well as by the Young’s mod-
uli of the coatings and the Fe-3%Si sheet (13)-(16) as
presented in [3, 7]. Numerical equality of the calculated
and measured thermal stresses is observed.

4. The magnetic induction of the Fe-3%Si sheet at
the magnetic field intensity of 800 Am~! [7], and the
hysteresis losses of the Fe-3%Si sheet at the magnetic
induction of 1.7 T and at the frequency of 50 Hz [7],
both before/after the coating formation, along with the
decrease of the hysteresis losses are presented. After the
coating formation, the hysteresis losses of the Fe-3%Si
sheet of the presented coating—Fe-3%Si systems ex-
hibit the decrease up to 18-23%, following the increase
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of the measured [7] and calculated thermal stresses act-
ing on the coating—Fe-3%Si boundary (Table I).
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